Summing the Geometric Series

In lecture we saw a geometric argument that $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 2$. By answering the questions below, we complete an algebraic proof that this is true.

We start by proving by induction that:

$$S_N = \sum_{n=0}^N \frac{1}{2^n} = \frac{2^{N+1} - 1}{2^N}.$$

Finally we show that $\lim_{N\to\infty} S_N = 2$.

- a) (Base case) Prove that $S_0 = \frac{2^1 1}{2^0} = 1$.
- b) (Inductive hypothesis and inductive step) Assume that:

$$S_{N-1} = \frac{2^{(N-1)+1}-1}{2^{N-1}} = \frac{2^N-1}{2^{N-1}}.$$

Add $\frac{1}{2^N}$ to both sides to prove that:

$$S_N = \frac{2^{N+1} - 1}{2^N}.$$

This completes the inductive proof.

c) Show that if
$$S_N = \frac{2^{N+1}-1}{2^N}$$
, then $\lim_{N\to\infty} S_N = 2$.

Summing the Geometric Series

In lecture we saw a geometric argument that $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=2$. By answering the questions below, we complete an algebraic proof that this is true.

We start by proving by induction that:

$$S_N = \sum_{n=0}^{N} \frac{1}{2^n} = \frac{2^{N+1} - 1}{2^N}.$$

Finally we show that $\lim_{N\to\infty} S_N = 2$.

- a) (Base case) Prove that $S_0 = \frac{2^1 1}{2^0} = 1$.
- b) (Inductive hypothesis and inductive step) Assume that:

$$S_{N-1} = \frac{2^{(N-1)+1} - 1}{2^{N-1}} = \frac{2^N - 1}{2^{N-1}}.$$

Add $\frac{1}{2^N}$ to both sides to prove that:

$$S_N = \frac{2^{N+1} - 1}{2^N}.$$

This completes the inductive proof.

c) Show that if
$$S_N = \frac{2^{N+1} - 1}{2^N}$$
, then $\lim_{N \to \infty} S_N = 2$.

a)
$$S_N = \sum_{n=0}^{N} \frac{1}{2^n} \Rightarrow S_0 = \frac{1}{2^n} = 1 \Rightarrow S_N = \frac{2^{N+1}-1}{2^N} = 1 \text{ for } N=0.$$

b) Assume that
$$S_{N-1} = \frac{2^{(N-1)+\frac{1}{2}}}{2^{N-1}}$$
 holds.

$$S_{N-1} + \frac{1}{2^N} = \frac{2^{(N-1)+1}}{2^{N-1}} + \frac{1}{2^N}$$

$$\Rightarrow S_{N} = \frac{2^{N} - 1}{2^{N-1}} \left(\frac{2}{2}\right) + \frac{1}{2^{N}} = \frac{2^{N+1} - 2}{2^{N}} + \frac{1}{2^{N}} = \frac{2^{N+1} - 1}{2^{N}}.$$

: So is true and hence Sn-1 is also true.

Hence, Sn is true for all nEN, n ≥ 0.

c)
$$\lim_{N\to\infty} \int_{N\to\infty} \int_{N=0}^{N} \frac{1}{2^{n}}$$

= $\lim_{N\to\infty} \frac{2^{N+1}-1}{2^{N}}$
= $\lim_{N\to\infty} \frac{2^{N+1}-1}{2^{N}} - \frac{1}{2^{N}}$
= $\lim_{N\to\infty} 2 - \frac{1}{2^{N}}$
= $\lim_{N\to\infty} 2 - \frac{1}{2^{N}}$
= $1 - 0$

= 2