Summing the Geometric Series

In lecture we saw a geometric argument that 1 + 3 + 1 + 3 +---=2. By an-

swering the questions below, we complete an algebraic proof that this is true.
We start by proving by induction that:
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Finally we show that lim Sy = 2.
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a) (Base case) Prove that Sy = % =1.
b) (Inductive hypothesis and inductive step) Assume that:
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Add N to both sides to prove that:
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This completes the inductive proof.
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In lecture we saw a geometric argument that 1+ -+ - + - 4+ --- = 2. By an-

swering the questions below, we complete an algebraic proof that this is true.
We start by proving by induction that:
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a) (Base case) Prove that Sy = % =1.

b) (Inductive hypothesis and inductive step) Assume that:
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Add N to both sides to prove that:
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This completes the inductive proof.
2N+1 _
c¢) Show that if Sy = —N then Nlim Sy = 2.
—00

N

n=0 Zh

1N’| 2 2_N lN ZN
Cv 1S True ond hene St is also frue.
Hene | Shois tree for all neN, n20 .



lim  Sn
N0 N '
— I'm Z—n
Nroo heo k
|
= |im il
N->o00 2”
Nl
- Im 2 _ _’_
Aol R
| |
= Im 2- "7
INEYS 2
= 12-0

I\



