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Summing the Geometric Series 
1 1 1 

In lecture we saw a geometric argument that 1 + + + + = 2. By an-
2 4 8 

· · · 
swering the questions below, we complete an algebraic proof that this is true. 

We start by proving by induction that: 

N
1 2
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SN = = . 
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Finally we show that lim SN = 2. 
N→� 

21�1
a) (Base case) Prove that S0 = 20 = 1. 

b) (Inductive hypothesis and inductive step) Assume that: 
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Add to both sides to prove that: 

2N 

2
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SN = . 
2N 

This completes the inductive proof. 

c) Show that if SN =
2
N+1 − 1

, then lim SN = 2. 
2N N→� 
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9) S=SoS= for N

b) Assume that SN-1= hold

S++
=> Cr=()
: So is true and hence SN-1 is also true ·

Hence
,
Sn is true for all nEN , n20

.
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